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The effect of rotation on the simpler modes of motion of 
a liquid in an elliptic paraboloid 
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(Received 6 November 1964) 

The six simplest modes of motion are considered and three rotational effects 
investigated : 

(i) The effect of the rotation of the earth. 
(ii) The effect of the rotation of the container. 
(iii) The effect of the rotation of the liquid within the container. 

The first two are shown to be equivalent for motion in a paraboloid, and the last 
two are also equivalent when the paraboloid is circular. In  the case of an elliptic 
paraboloid the last is rather more difficult and one must first derive a solution of 
the non-linear equations representing ‘ elliptic rotation ’ and then consider devia- 
tions from it. 

The changes in frequency consequent on the rotation are derived in all three 
cases for all six modes. In  the case of the earth’s rotation the disposition and 
character of the amphidromic (nodal) points and the amphidromic waves that 
rotate round these points are investigated in detail. One mode is particularly 
interesting because it has four amphidromic points, the waves rotate in a positive 
sense around two of these and in a negative sense round the other two. 

1. Introduction 
Previous treatments of the effect of the earth’s rotation on shallow water 

motions in other than axially symmetric basins have generally led to a great deal 
of involved theory, see for example Taylor (1920), Proudman (1928), Corkan & 
Doodson (1952) and recently Van Dantzig & Lauwerier (1962). The elliptic 
paraboloid seems to be the simplest of such basins to deal with because the 
solutions are polynomials in the spatial co-ordinates and the frequency equation 
is algebraic instead of transcendental (this was pointed out by Goldsbrough 1930 
in the case of no rotation). Furthermore, the elliptic paraboloid is a t  least as good 
an approximation to many naturally occurring bodies of water as is, for instance, 
a rectangle or ellipse of constant depth favoured by earlier theorists. The disposi- 
tion and character of the ‘tidal ’ waves and amphidromic (nodal) points in such 
a basin, and the effect of rotation on the frequencies of oscillation have immediate 
practical relevance in the study of actual lakes (see Platzman & Rao 1963) and 
possibly also in the study of partially enclosed seas. 

The lower modes are likely to be of the most importance from a practical point 
of view, since they are the ones most easily excited, and they are also the easiest 
to treat theoretically. Accordingly we consider in detail only the two lower 
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groups of modes; these are the 'displacement' modes that involve a motion of 
the centre of gravity of the liquid and in which the horizontal velocities are 
functions of time only (they have been described in part previously, see Ball 
1963a, b)  and the 'deformation' modes that involve uniform rotation, expansion 
and distortion of the liquid and in which the spatial derivatives of the velocities 
are functions of time only. We could, of course, extend the analysis and consider 
the next group of modes in which the velocities are quadratic functions of the 
spatial co-ordinates, the second derivatives then being functions of time only. 

Three rotational effects are considered: 
(i) The effect of the earth's rotation; this introduces Coriolis terms without 

(ii) The effect of rotation of the elliptic container; this introduces both 

(iii) The effect of the rotation of the liquid relative to the elliptic container. 
The first two of these are essentially equivalent (for motion in a paraboloid); 

results for one can be converted into results for the other merely by redefining 
certain constants (a relationship which could be useful for the application of 
laboratory experiments). The last is rather more difficult and one must first 
derive a solution of the non-linear equations representing 'elliptic rotation ' and 
then consider deviations from it. It is a problem that does not arise when one is 
considering axially symmetric basins ((ii) and (iii) are then equivalent) and does 
not appear to have been discussed previously, but is of some geophysical interest 
since most naturally occurring bodies of water do in fact possess horizontal 
circulations (usually wind driven). 

corresponding centripetal terms. 

Coriolis terms and centripetal terms. 

2. Formulation 
The equation of the underlying surface is 

z = +(m"/3y2), (2.1) 

Dh/Dt + h(au/ax + avpy)  = 0, ( 2 . 2 )  

Du/Dt + g(Zh,/?x -t ax) = 0 (2.3) 

and Dv/Dt + g(ah/?Y + &) = 0. (2.4) 

the equation of continuity, for a liquid of depth h, is 

and the equations of motion in the absence of rotation are 

If we take account of the earth's rotation then Coriolis terms must be introduced 
without corresponding centripetal terms, since the latter are absorbed in the 
value for g. The equations of motion then become 

Du/Dt+g(ah./&+ax) = fv, (2 .5 )  

and Dv/Dt+g(ah/ay++~) = - f t l ,  (2.6) 

where f is the Coriolis parameter of the earth's rotation and is equal to 2a sin 8 ;  
8 being the latitude and SZ the angular velocity of the earth. However, if the 
basin is rotating wit,h constant angular velocity w and axes are taken which 
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rotate with the basin, then centripetal and Coriolis terms are present and the 
equations of motion become 

Du/Dt + g[ah/az  + (a  - d / g )  21 = 20w, (2.7) 

and Dv/Dt+g[ah/iiy+(p-w'/g)y] = - 2 6 ~ ~ .  (2.8) 
Equations (2.7) and (2.8) become identical to equations (2 .5 )  and (2.6) if we make 

(2.9) 
the transformation a - d / g + a ,  p-o"g+p, 2w+f .  

Any result derived from equations (2.5) and (2.6) can therefore always be 
reinterpreted as a result for (2.7) and (2.8) (and vice versa). In  particular we 
cannot have a static solution for (2.5) and (2 .6) ,  with a finite volume of liquid, if 
either a or /3 is not positive; correspondingly we cannot have a static solution for 
(2.7) and (2.8) if either a g  < w2 or pg < 02. In  the former case the liquid collapses 
under gravity and in the latter under the influence of centrifugal forces. 

3. Displacement modes 

(2.2),  (2.5) and (2.6) for simple displacement modes is given by 
It was shown by Ball (1963a)  that the exact solution of the non-linear equations 

u = d X / d t ,  v = d Y / d t ,  (3.1) 

and h = H - i [ ~ ~ ( x - X ) z + p ( y -  z')2]~ (3.2) 

where H is a constant and X and I' (the co-ordinates of the centre of gravity of 
the liquid) are functions of time only which satisfy the ordinary linear differential 

(3.3) 
equations 

d2Xldt2+ a g x  = f d Y / d t ,  

and d2Yldt2 + p g y  = -fax/&. (3.4) 

( v2 -ag)  (v2-Pg)  = vy2, (3 -5 )  

The frequencies of these modes (v) are therefore given by 

a result that is independent of the volume of liquid in the basin. This equation 
has the same form as the approximate frequency equation derived by Lamb 
(1932, tj 212a)  for the lowest modes of a rotating rectangular basin of uniform 
depth. 

In  the absence of rotation the frequencies of these modes are (ag)* and (pg)*,  
each mode involving displacement parallel to one of the principal axes of the 
elliptical container with the other principal axis as a nodal line? (as indicated 
schematically in figure 1). Each mode also exerts an oscillatory transverse force 
on the container and can be generated by transverse oscillation with appropriate 
frequency or by a sudden transverse motion of the container. 

The earth's rotation does not alter the product of the roots of (3.5),  one must 
therefore be increased and the other decreased in frequency. In  fact we find that 
the frequency of the low frequency mode is decreased and the liquid particles 
instead of moving parallel to the major axis now move in ellipses whose major 
axes are parallel to that of the basin. The direction of motion is anticlockwise (in 

t These are true nodal lines only when the amplitude is small; the non-linear terms give 
a small oscillation in depth of twice the frequency of the normal mode. 
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the northern hemisphere) and the nodal line is replaced by a ‘positive’ amphi- 
dromic point at the centre of the ellipse (i.e. about which the cotidal lines and 
amphidromic wave rotate in a positive sense). This type of motion is observed 
for the low frequency mode in Lake Erie (see Platzman & Rao 1963). Opposite 
conditions prevail for the high frequency mode; its frequency is increased, the 
particles instead of moving parallel to the minor axis of the basin now move 
clockwise in ellipses whose major axes are parallel to the minor axis of the basin. 

FIGURE 1. Displacement modes: (a) low frequency (longitudinal) mode; ( b )  high frequency 
(transverse) mode. In  each case the small ellipse gives the nodal line in the absence of 
rotation and the large ellipse gives the sequence of ‘instantaneous nodal lines’ when the 
system is rotating anticlocliwise. The direction of rotation of these lines round the central 
amphidromic point is indicated by an arrow. 

The nodal line is replaced by a ‘negative’ amphidromic point (see figure 1). Both 
of these modes now have an oscillatory angular momentum and exert an oscil- 
latory couple on the basin with a frequency of twice that of the normal mode. 

It is of interest to compare these simple results with previous work. The change 
in frequencies is in agreement with the rule of ‘repulsion of frequencies ’ (Rayleigh 
1903). The existence of a negative amphidromic point is in disagreement with 
Taylor’s (1920) conjecture that amphidromic points should always be positive. 
It is, however, in agreement with later work by Jeffreys (1925), and the whole 
pattern of co-tidal lines is qualitatively very similar to those derived by Goldstein 
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(1929) for analogous modes of motion in an elliptic basin of constant depth, 
though the present analysis is a great deal less complicated. 

In  the case of a circular basin, without rotation, the normal modes are to some 
extent arbitrary and there are no unique normal modes to be obtained by allowing 
both the ellipticity of the container and the rotation to tend to zero. If we first 
let f --f 0 and secondly let cc -+ p, then the modes we obtain are simply two trans- 
verse oscillations a t  right angles to one another; whereas if we let cz -+p and then 
let f -+ 0, t,he modes we obtain are two rotations of opposite sense. This means 
that the modes of a nearly circular basin are very sensitive to changes in the 
de,gree of rotation and ellipticity. 

If the basin is rotating with angular velocity w ,  then by applying the trans- 
formation (2 .9) ,  we find the appropriate frequency equation 

(v2 - ccg + w2) (v2 - pg + w2) = 4v2w2, (3 .6)  

and the situation is substantially the same as in the previous case. On the other 
hand the rotation of the liquid within the container has no effect on the frequency 
equation because it was shown by Ball ( 1 9 6 3 ~ )  that equations (3 .3)  and (3 .4)  are 
independent of any (shallow water) motion that the liquid may possess relative 
to its cent,re of gravity. 

4. The deformation modes 
It is clear from the form of the non-linear equations (2 .2 ) ,  (2 .5)  and (2 .6)  that 

it  is possible to find exact solutions in which the velocities are linear functions, 
and the depth is a quadratic function of x and y; the coefficients of the poly- 
nomials being functions of time. The derivatives of the velocities with respect to 
x and y will then be functions of time only, i.e. the deformation, and in particular 
the vorticity and expansion, will be uniform. The linearized perturbation 
equations are a great deal simpler than the full equations and are adequate to 
determine the effect of the earth’s rotation or the rotation of the basin on the 
deformation modes. It is only in the last case to be considered, that is the 
rotation of the liquid within the basin, that we need consider the non-linear 
equations and this is dealt with in 9 7. 

The perturbation equations corresponding to equations (2 .2 ) ,  (2 .5)  and (2 .6 )  
can be written 

(4.1) 

Ful8t + g aqjax = f v ,  ( 4 . 2 )  

s v p t  + g  a r p y  = -fa, (4 .3 )  

h, = H o - 4 ( ~ x 2 + / 3 y 2 ) .  (4.4) 

hq/at + i l(h,u)/c?~ + a(h,v) /@ = 0, 

where we have put h = h , + q  and h, is the static equilibrium depth given by 

We now search for solutions of the form 

and 

= A , x + B , y ,  

= A , x + B , y ,  

7 = qo - $(ax2 + 2cxy + by2) ,  
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where A,, B,, A,, B,, yo, a, b and c are functions of time only. If these expressions 
are substituted into equations (4.1)-(4.3) and coefficients equated, we obtain 
8 simultaneous, first-order, ordinary linear differential equations in the 8 
unknowns : 

(4.8) I ? y o / ? t + ( A l + B , ) H o  = 0, 

iA , / i t  - ag = fA,, 

a a / P t + ( 3 A , + B 2 ) a  = 0, 

% / F t  + (A ,  + 3 B J P  = 0, &/at + B,a + A2P = 0, 

iiB,/Ft - cg = fB,, 
5,4,/Et - cg =z - fA,,  iiB,/iit - bg = - fBl. 

It is rather more informative when investigating the geometry of the motions 
described by equations (4.8), to consider the variables 

i (4 .9 )  I 
2 = &/?x + av/Py = A ,  +B, 

5 = h / ? x  - = A ,  - B, (vorticity), 

(expansion), 

(distortion). t L = aa/C?x - iiv/@/ = A ,  - B, 

M = 8v/& + au/& = A ,  + B, 

The interpretation of x as the rate of increase of horizontal area of a fluid element 
and of 5 as twice the angular velocity of an element is well known. The compo- 
nents L, M of the distortion are less familiar but also have a simple geometric 
interpretation. L is a measure of the rate a t  which a fluid element is becoming 
elliptical, the principal axes of the ellipse being parallel to the axes of co-ordinates, 
M is a similar measure, the axes of the ellipse now being a t  45 degrees to the axes 
of co-ordinates. 

By eliminating yo, a, b and c from (4 .8)  and using the new independent variables 
(4 .9 )  we find 

(4 .10)  

(4 .11)  

d2L/dt2+2x(.-P)g+L(a+P)g-fdMldt = 0, (4 .12 )  

d!Jdt + fx = 0, 

d2Xldt2 + 2x(a + p ) g  + L(a - P ) g  - f dc/dt = 0, 

and d2iM/dt2+1Cl(a+B)g-5(a-P)g+fdL/dt = 0, (4 .13 )  

and the four equations (4.10)-(4.13) now contain only four dependent variables 
6, x, L and M .  If we seek a solution of frequency v we find 

v { [ v ~ -  V 2 3 ( a + p ) g +  S ~ l p g ~ ]  [v"(("+P)g] 

-2f2[~4-~22(a+P)g+2~~pg2]+1'2f4} = 0. (4 .14)  

This equation gives the frequencies of the (four) modes of uniform deformation 
and is (like the corresponding equation for the displacement modes) independent 
of the volume of liquid in the basin. 

Let us first consider what happens when there is no rotation (i.e. f = 0), we 
then have the four roots 

(4 .15)  

(4 .16)  

4 = g(a +P), (4 .17)  

v4 = 0. (4 .18)  

v2 1 - - 29(3(a 1 +B) - [(a + PI2 + 8(a - B)21"> 
v; = 3g(3(a + p) + [(a + p), + 8(a - /3)"3"}, 

and 
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The first three of these modes were described by Goldsbrough (1930). The last 
one (v = 0), which is necessarily rotational, does not seem to have been described 
previously except in the case of a circular paraboloid (Miles & Ball 1963). We will 
subsequently (9  7) be particularly concerned with the noii-linear solution 
corresponding to this mode. 

FIGURE 2. Oscillatory deformation modes : (a )  low-frequency ‘distortional’ mode ; ( b )  high- 
frequency ‘espansional’ mode; (c) high-frequency ‘distortiona.1’ mode. In  each case the 
small ellipse gives the nodal lines in the absence of rotation and the large ellipse gives the 
sequence of ‘instantaneous nodal lines ’ when the system is rotating anticlockwise. The 
direction of rotation of these lines round the amphidromic points is indicated by arrows. 
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In  the first two of these modes we have, from equations (4.10) and (4.13), 

c = O  and M = 0 ,  with f equal to zero, 

whence c = 0 (from equations (4.8)). 

The elliptical periphery of the liquid therefore always has its principal axis 
parallel to those of the basin. One of these modes (the low-frequency one (4.15)) 
is predominantly ‘distortional’; the minor axis of the liquid contracts as the 
major axis expands. The nodal lines are hyperbolic arcs intersecting the major 
axis of the ellipse (see figure 2). On the other hand the high-frequency mode 
(4.16) is predominantly ‘expansional’; the principal axes of the liquid expand 
and contract together and the nodal line is a complete ellipse of greater eccen- 
tricity than the periphery of the liquid. In  the case of extreme ellipticity the 
distinction between these modes on the basis of their degree of distortion and 
expansion is no longer very significant. The low-frequency mode becomes almost 
entirely longitudinal, with two nodes, and the high-frequency mode becomes 
largely transverse with the nodal ellipse almost touching the periphery at the 
ends of the major axis. There is consequently a region of almost stagnant liquid 
a t  each ‘end’ of the ellipse. Neither of these modes possess angular momentum 
and there is no couple exerted by or on the container. 

The third mode (4.17) is purely distortional, since equations (4.9)-(4.13) imply 
that 5, x, L, q,,, a and b are all zero, leaving M and c as the only non-vanishing 
dependent variables. The principal axes of the ellipse are now the nodal lines and, 
to a first approximation, the elliptical periphery of the liquid does not change 
shape but executes an oscillatory rotation about its centre. This mode is inter- 
esting because, unlike the others, it is associated with an oscillatory angular 
momentum and a corresponding oscillatory couple exerted on (or by) the basin 
(provided a + p). In  the case of a circular basin the first and third modes become 
similar (as remarked by Goldsbrough 1930). 

The fourth mode is unique (among those here discussed) because it involves 
a perturbation of the vorticity 6; however, x, L, T ~ ,  a, b and c are all zero. This 
mode, in fact, is merely an infinitesimal ‘elliptic rotation’ without any change 
in shape of the liquid. It cannot be generated except by some process that can 
generate vorticity (usually involving friction). In  5 7 we shall determine the 
change in shape of the liquid when the elliptic rotation is finite and subsequently 
determine the effect of such a rotation on the frequencies of the other modes. 

5. The effect of the earth’s rotation 
The effect of the earth’s rotation on these modes, or on corresponding modes 

in other types of basin, does not seem to have been described previously (except 
for some discussion of the change in frequency); a fairly detailed description is 
therefore given. Because of the simplicity of the solutions it is possible to do this 
without numerical computation though the algebra is a little tedious. To deter- 
mine the effect of rotation on the frequencies it is convenient to express the 
frequency equation (4.14) in dimensionless form. We define the dimensionless 

(5.1) 
frequency u by 

u2 = V “ ( ~ S + B S ) ,  
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and two dimensionless constants 

N2 =f2I(as+,8g), (5.2) 

and Q2 = 1+8(a+,8)2/(a+,8) ( 1  < Q < 3). (5.3) 

The constant N is a measure of the degree of rotation and, for realistic values 
of a andb, is usually less than 10-l. The constant Q is a measure of the ellipticity 
of the basin and ranges from unity, when the basin is circular, to a limiting value 
of three when the basin is extremely elliptical. 

If the root v = 0, whose value is unchanged by rotation, is omitted, equation 
(4.14) in dimensionless form becomes 

P = [u4-3g2+4(9-Q2)] [c2- 1 ] -N2[2~4-4~2+i (9 -&2) ]+~2N4 = 0, (5.4) 

and the three roots, when N = 0, are 

(5.5) a2 1 - - 2(3-Q), 1 a; = &(3+Q),  cr; = 1.  

Using the Descartes rule of signs and observing that 

, +  s g n F =  -, +, +, - 

for c r 2 =  0, $(3-&), 1,  $(3+Q), 00, 

we infer that the roots of (5.4) lie in the intervals (0 ,3(3 - Q)), (1, $(3 + Q)) and 
(&(3 + &),a). The two higher frequency roots are therefore increased in frequency 
by the earth’s rotation whereas the lowest frequency root is decreased in frequency 
again in agreement with Rayleigh’s rule of repulsion of frequencies. 

When the ellipticity is large by comparison with the rotation, i.e. when 

& - 1 $ N ,  (5.6) 

CT: = $(3-Q) -4N2(3Q+ 1) (3-Q)/(Q2-Q), (5-7) 

= +(3+Q)+$N2(3&- 1) (3+Q)/(Q2+&), (5.8) 

and cr: = l+$N2(7+&2)/(&2-1), (5.9) 

it is easy to show that the approximate roots of (5.4) are 

in agreement with the qualitative conclusions reached in the preceding para- 
graph. This approximation for the high frequency root g2 is valid for the whole 
range of Q and in fact gives exact values for the root when Q = 1 or when Q + 3. 
The approximations for the other two roots are clearly invalid when the inequality 
(5.6) is not satisfied. A rather unwieldy approximation for these roots, valid for 
small N over the whole range of Q, can be found by using the known approxima- 
tion for the high frequency root (r2 and determining the sum and product of the 
other two roots from the coefficients of (5.4). We then find 

CT: + 0-3” = +(5 - &) + @72(5&2 + 3)/(&2 + Q), 
CT2g2 1 3 - - r[3 1 - Q1 [ 2  + N2(Q - 1)2/(Q2 + &)I, 

(5.10) 

(5.11) 

and the roots are therefore given by 

g2 = 4{5 - Q + +N2(5Q2 + 3)/(Q2 + &) 

Ii [(Q- 1)2+N2(3+&)(1  +~Q-Q2) / (Q2+Q)13) .  (5.12) 
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The properties of these modes, mentioned in the previous section, are modified 
by the presence of rotation. For instance, the first two modes, which in the 
absence of rotation have zero values of c ,  M and <, no longer have this property; 
there is a small amplitude (dependent on f )  oscillation of these quantities. 
Furthermore, the angular momentum of the liquid also oscillates in value, 
implying an oscillatory couple acting on the basin. In  the third mode the 
quantities 5, x, L, yo, a and b are no longer zero but again oscillate with an 
amplitude dependent on f .  

These three modes, instead of having nodal lines, have two or four amphi- 
dromic points, the positions of which may be determined by setting ar/at equal 
to zero. Differentiating (4.7) with respect to time and eliminating T ~ ,  a, b and c 
by using equations (4.8) we obtain 

dy/dt  = - xHo + 4{ax2(2x +L) +xy[M(a  +p) - 5(a -p)] +py2(2x-  L)). (5.13) 

The quantities M and 5, which occur in the coefficient of xy in (5.13), differ in 
phase by $71 from x and L; consequently dyldt cannot vanish at all times unless 
both xy and the sum of the remaining terms are zero. We can express x in terms 
of L by using (4.10) and (4.11) to give 

x[f2+2(cr.+/3g-v21 = L(P-a)g, (5.14) 

and we suppose that the major axis of the ellipse is in the z direction so that the 
coefficient of L on the right-hand side of (5.14) is positive. The condition for the 
vanishing of the x, L terms in (5.13) is therefore 

$ax2( f 2 - Y 2  + 4pg) + i p y y  v2 -f2 - 4ag) = (p - a)  Hog, (5.15) 

and the amphidromic points occur at the points of intersection of the conic (5.15) 
with the axes (zy = 0). 

In  the case of the first mode we have shown that the frequency is reduced by 
the earth's rotation and is therefore less than v1 of equation (4.15); so that in the 
coefficient of x2 in (5.15) we have 

j 2 -  Y' + 4& > 4pg - V ;  = &{5p- 3a + [(a -I-# + S(p - a)']&}, (5.16) 

which is clearly positive (p > a). Similarly for the coefficient of y2 

v2-f2-4ag < vf-44c~g = 4g{Sp-5a- [ ( ~ ~ + p ) ~ + 8 ( / 3 - a ) ~ ] & ) ,  (5.17) 

which is clearly negative. The conic (5.15) is therefore a hyperbola that intersects 
the x-axis; furthermore, the points of intersection, as may easily be shown, always 
lie within the liquid. The first mode therefore has two amphidromic points on 
the major axis of the container, which incidentally are positive as in the case of 
the low-frequency displacement mode (see figure 2 (a)) .  There is now a double 
'tide ' rotating positively round the periphery of the basin, In  the limiting case 
of a circular basin the two amphidromic points coalesce at the centre to produce 
a double positive amphidromic point. 

In  the case of the second mode, where the frequency is increased by rotation, 
we can show by similar reasoning that the conic (5.15) is an ellipse which inter- 
sects the axes at four points that always lie within the liquid. There are therefore 



Effect of rota.tion on liquid in a paraboloid 539 

four amphidromic points of which the two on the y-axis are negative (in agreement 
with the orbital motion of the liquid particles), whereas the two on the x-axis 
are anomalously positive (see figure 2 ( b ) ) ,  thus providing a simple example of 
a singke mode with amphidromic points of both senses. In  the limiting case of 
a circular basin the amphidromic points are replaced by a circular nodal line. 

In the case of the third mode, where the frequency is again increased by 
rotation, the conic (5.15) may be a hyperbola that intersects the x-axis or an 
ellipse which, however, intersects the y-axis outside the region occupied by the 
liquid. There are therefore, as in the case of the first mode, just two amphidromic 
points. These points are now negative so that there is a double tide that rotates 
negatively round the periphery of the liquid (see figure 2 (c)). In  the limiting case 
of a circular basin the two amphidromic points coalesce at the centre of the basin 
to produce a double negative amphidromic point. 

Each of these modes has a null point (marked N in figure 2) at the centre of 
the basin, where both the velocity and the slope of the free surface vanish a t  all 
times. Topological considerations suggest that adjacent amphidromic points of 
the same sign must always be separated by a null point and adjacent amphi- 
dromic points not so separated must be of opposite sign. 

These three modes have another important property in common, namely that 
each liquid column has the same potential vorticity (<+ f ) /h  during the course of 
its motion as it would have if a t  rest in its equilibrium position. This is an im- 
mediate consequence of the conservative property of potential vorticity 

the ‘perturbation’ expression for which, in this particular case, is 

and since we are considering a purely oscillatory solution we must have 

Y-fro/Ho = 0. 

These modes can therefore be generated by simple processes that do not involve 
transfer of vorticity to the liquid, for instance, appropriate variation of (atmo- 
spheric) pressure on the free surface or an appropriate motion of the elliptic 
basin (earthquake). 

The fourth mode, of zero frequency, is again an infinitesimal ‘ elliptic rotation’ 
relative to the basin; it also involves a slight spreading of the liquid if the rotation 
is ‘cyclonic’ (i.e. < and f have the same sign) and a slight contraction if ‘anti- 
cyclonic’, as is evident from equations (4.8). The perturbation of the potential 
vorticity a t  the centre of the liquid is 5- fro/Ho and we also have 

4yo/H = a/& + b /P  

by virtue of volume conservation. Then from (4.8) we find 

Y - f r o P o  = C P  +f 2/l?9(a +P)I)Y 
which is never zero. This mode can therefore be generated only by processes 
which transfer vorticity to the liquid. 
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6. The effect of rotation of the basin 

by transforming equation (4.14) in the way indicated in (2.9). We then obtain 
The corresponding results for a rotating basin are perhaps most easily derived 

[v4 - 3v2g(a + p) + 8g2aP] [v2 - g ( a  + p)] 
+ 4w2[v2 - 2g(a + p)] [w2 - g(a + p)] = 0, (6.1) 

or in dimensionless form, using the quantities defined by equations (5.1)-(5.3) 
(with f = 2o), we obtain 

[a"- 304+ a(9 - Q')] [w'- 11 -N2( 1 -$A'') (a'- 2) = 0. (6.2) 

We need consider only the case where 

i ( 9  - Q 2 )  > N2( 1 - ax') > 0, (6.3) 

for if this condition is not satisfied static equilibrium is impossible (i.e. either 
ag < wa or pq < w2, as may be seen by returning to the definitions of Q2 (5.3) and 
N2(5.2)) .  Using the Descartes rule of signs we can then make exactly the same 
inferences about (6.2) as we did about (5.4). 

When the inequality (5.6) is also satisfied the approximate roots of (6.2) can 
be written 

(6.4) 4 = 4(3 - Q) - N2(Q + 1)/(Q2 - Q ) ,  

where, as before, the approximate form for cri is valid for the whole range of Q 
whereas the other results are limited to the conditions under which the inequality 
(5.6) is satisfied. In  particular, when Q is unity (i.e. the basin is circular) the 
frequency of high-frequency mode (u2) is independent of rotation (as previously 
pointed out by Miles & Ball 1963). 

Once again we can determine an approximate formula for g1 and c3 which is 
valid over the whole range of Q by using the approximation for C T ~  (equation (6.5)) 
and deducing from the coefficients of equation (6.2) that 

(6.7) 

(6.8) 

CJ-: + o-; = g(5  - Q) - N2(Q - 1)/(Q2 + Q ) ,  
and g 2 g 2  1 3 - - 1 2(3-Q&)-N2(3Q-1)/(Q2+Q), 

whence 

c2 = &{5 - Q - 2N2(Q - 1)/(Q2 + Q) k [(& - + 4N2(Q2 + 6Q + 1)/(Q2 + Q)]". 
(6.9) 

The various properties of these modes are very similar to those of the modes 
described in the preceding section and will not be discussed further. 

7. Non-linear solution with uniform deformation 
The main object of this section is the determination of an exact solution of 

the non-linear equations ( 2 . 2 ) ,  (2 .5)  and (2.6) representing elliptic rotation. This 
solution is given by equations (7.11), (7.12) and (7.14)-(7.17) and is all that is 
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requirdd in $8; however, for completeness, it is indicated briefly how more 
general non-linear solutions can be found. If we substitute the expressions 
(4.5)-(4.7) for u, v and 7 (7 = h-ho,  see equation (4 .4) )  into the non-linear 
equations ( 2 . 2 ) ,  (2.5) and (2.6), and equate coefficients, we again obtain 
8 simultaneous, first-order, ordinary differential equations for the 8 unknowns, 
the equations now being non-linear. They are 

dA,/dt - ag - fA, + A2, + A, B, = 0, 

dB l /d t  - C g  - f B 2  + A1 B, + B, B, = 0,  

dA,/dt - cg + fA1 + A ,  A, + A2 B, = 0,  

dB,/dt - bg + fBl + A 2  B, +BE = 0,  

d r o p  + Ho(A, + B,) + 7o(A,+ B,) = 0,  
da/dt + 01(3A1 + B,) + 4 3 A 1  + B,) + %A, = 0, 

db/dt +/?(A,  + 3B2) +b(A,  + 3B,) + ~ c B ,  = 0 

dc/dt + CXB, + PA2 + uB, + b A ,  + 2c(Al + B,) = 0. and 

The first three terms in each equation are linear in the dependent variables and 
are the same as the terms of equations (4.8), the additional terms are all non- 
linear (quadratic). It is a simple matter to determine numerically the solution 
of this set of equations with any given initial conditions. Furthermore, these 
equations have three integrals expressing constancy of volume, energy and 
peripheral circulation (angular momentum is not constant because of the possi- 
bility of the elliptical container exerting a couple in the liquid, as has been 
remarked previously). 

It is more convenient and informative to use the variables defined by (4.9) 
together with 

in terms of these variables equations (7.1) become 

(7.2) s = a+t?+a+b, r = a-/?+a-b, q = 2c; 

d</:ldt + x < + f  x = 0,  (7.3) 

d , ~ / d t + & ( x 2 + L 2 + M 2 - < 2 ) - ~ g + ( a + f ) g - , f g  = 0,  (7.4) 

d L / d t + X L - r g + ( a - P ) g - f M  = 0, (7.5) 

d M / d t  + X M  - q g  + f L  = 0, (7.6) 

d7oldt + x(& + 70) = 0,  (7.7) 

dsldt + 2xs  + L r  + 2Mq = 0,  (7.8) 

drldt + 2xr + Ls + <q = 0, (7.9) 

dq/dt + 2x4 + Ms - <r = 0. (7.10) 

Various special solutions of these equations can easily be found and these will 
be discussed elsewhere; we are at present interested only in the steady-state 
solution. On this assumption equation (7.7) implies that 

?I = 0,  (7.11) 
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since the central depth, H,+ q,, cannot be zero. Equation (7.3) is then auto- 
matically satisfied and (7.5) and (7.6) become 

rg = ( a - P ) g - f M ,  

L(a-B)s = 0, 

and 49 = fL*  
Equation (7.8) now reduces to 

(7.12) 

(7.13) 

whence L = 0 (since a + p), (7.14) 

4 = 0, (7.15) 

and equation (7.9) is automatically satisfied. Equations (7.4) and (7.10) reduce to 

+ ( M 2  - c2) - sg + (a  + p ) g  -ftJ = 0, (7.16) 

and M s  = cr, (7.17) 

which, together with (7.12), if we suppose the vorticity to be given, suffice to 
determine s, r and M .  Eliminating r and M we obtain a cubic in sg + fc which, 
for realistic values of c, has only one real root; there is therefore a unique steady 
solution (elliptic rotation) with given vorticity. If the container is circular 
(a = p ) ,  then M = 0, and we obtain the more familiar case of circular rotation, 
with the spread of the liquid consequent on its rotation being given by 

sg = 2 ~ q - f < - + < ~  (from (7.16)); 

decrease in s corresponds to an increase in spread of the liquid, If the container 
is not rotating (f = 0) then r = a - p and the free surface of the liquid is a circular 
paraboloid, despite the fact that it rotates within an elliptic basin. The curvature 
of this paraboloid is, however, somewhat less than that produced by circular 
rotation with the same vorticity. 

8. The effect of finite elliptic rotation 
We now investigate the effect of rotation of the liquid within the elliptic basin 

on the frequencies of the other deformation modes, assuming that the basin itself 
is not rotating and neglecting the rotation of the earth. 

If we take elliptic rotation as our basic solution, indicated by suffix 0, and 
consider perturbations from it, equations (7.3) to (7.10) become 

and 

dtJ’ldt + xc, = 0, 

dX/dt + M’M, - c’Q - s’g = 0, 

dLld t  - r’g = 0, 

dM’ldt + - qg = 0, 

dTi/dt+XH, = 0, 

ds‘ldt + 2xs0 + Lr, + qM, = 0, 

dr’ldt + 2xr, + Ls, + qCo = 0, 

dq/dt + S‘M, + M’s, - r’c, - Cr, = 0. 
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These equations have a steady state (zero frequency) solution for which x, L, T' 

and q are zero. This merely represents an infinitesimal change in the degree of 
elliptic rotation and corresponds to the fourth mode of our previous solutions. 
If we disregard this solution the remaining modes of uniform deformation are 
determined by 

(8.9) 

dzL[dt2+ 2 ~ ( a - ~ ) g + L s o g + q ~ o g  = 0, (8.10) 

(8.11) 

@X/dP+ 2x(a +p) g + L(a -p) g + 2qMog = 0, 

@q/dt2 + L[s0Co - M,(a - p)] + @(a + p) g -sag] = 0. and 

These equations may be derived by eliminating c', M' ,  s' and r' from (8.1)-(8.3) 
and (8.5)-(8.8) and simplifying slightly by using equations (7.12), (7.16) and 
(7.17) with f = 0. The frequency equation is therefore given by 

' 2(a  + P ) g  - lJ2 (a-P)g  

s o c o  - M o b  - p, 2(a +P)g  -809 - y 2  I 
2(a-t%s sog - v2 2Mog cog 1 = 0. (8.12) 

On the assumption that ci 4 (a +p)g ,  the approximate solution of (7.12), 

(8.13) 

and 80 = [a +p] [ I -  N2&(9 - Q 2 ) ] ,  (8.14) 

where N 2  is now defined by N 2  = Ci/(ag+,8g), (8.15) 

and Q is as defined previously (5.3). Using these values in expanding the 
determinant (8.12) and expressing the result in dimensionless form, we find 

I 0  

(7.16) and (7.17) is 
iW;= C2 0 (E:;) __ = GHQ2- 

F = [g4- 3g2+  &(9-Q2)] [g2 - 11 - &N2(9 - Q 2 )  [a2 - 2 + g ( Q 2 -  l)] = 0. (8.16) 

Observing that when 

g2 = 0, +(3-Q), &[8-(1+Q2)*], 1, 4(3+Q),  00, 

sngFis  -, +, +, +, - , +, (I+ > Q2 > I) ,  

, 7 , +, (9  > Q2 > _aSe), 
or -, +,  +, - 9 - , +, (58  > &2 > y), 

- - +, - or -, 

we infer that in the range of ellipticities +*- > Q2 > 1 the mode of lowest frequency 
is decreased and the other two modes are increased in frequency by elliptic 
rotation (this rotational effect is qualitatively the same as in the previous cases). 
In  the range 9 > Q2 > 9 the mode of highest frequency is increased and the 
other two modes are decreased in frequency, whereas in the range of large 
ellipticity, 9 > Q 2  > +g, the middle mode is decreased and the other two modes 
are increased in frequency. The approximate roots, provided the inequality (5.6) 
is satisfied, are 

(8.17) 

(8.18) 

(8.19) 

g 2  1 - - 3(3 -Q)  1 -N2(9-Q2) ( Q  + 1) (7 -3Q)/[32&(Q- 1)1, 

g 2  2 - - H(3+&)+N2(9-Q2)(Q-1)(7+3Q)/[32&(&+1)I,  1 

G$ = 1 + N'(9 - Q2) (1 1 - 3Q2) / [  1 6(Q2 - I)]. 

An approximate result analogous to (5.12) or (6.9) can also be derived. 
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9. Higher modes 
We can investigate the nth group of higher modes by assuming that h is an 

nth degree polynomial in x and y ,  and that the velocities are (n- 1)th degree 
polynomials. By substituting into the perturbation form of equations (2.2), (2.5) 
and (2.6) and equating coefficients we obtain 3n+ 1 equations involving the 
3n + 1 coefficients of the highest degree terms in the polynomials. These equations 
form a determinate set on their own and lead to a (3n+ 1)th degree frequency 
equation. The vorticity is an (n - 2)th degree polynomial in x and y ,  and, jn the 
absence of rotation, conservation of vorticity implies that the vorticity is zero 
for oscillatory modes and constant (with respect to time) for the zero frequency 
modes. There are n - 1 terms of degree n - 2 in the polynomial for the vorticity, 
indicating that there are n - 1 independent modes of zero frequency, most simply 
defined by supposing that each mode involves the vanishing of all except one of 
these coefficients. The remaining 3n + 2 roots of the frequency equation occur in 
equal pairs of opposite sign corresponding to n+ 1 oscillatory modes. I n  the 
absence of rotation we therefore have n + 1 oscillatory modes with no vorticity and 
n - 1 modes with constant vorticity and zero frequency. 

When rotation is introduced the behaviour of the system depends to some 
extent on the parity of n. If n is odd, the n - 1 modes, formerly of zero frequency, 
occur as equal pairs of opposite sign to produce &(n - 1) oscillatory modes, giving 
a total of i ( 3 n  + 1) oscillatory modes. If n is even, then n - 2 of the modes, 
formerly of zero frequency, occur as equal pairs of opposite sign to produce 
&(n - 2) oscillatory modes, giving a total of $n oscillatory modes. The remaining 
mode still has zero frequency, this mode corresponds to elliptic rotation when 
n = 2. 

Some of the preceding remarks are exemplified by the cubic modes (n = 3). 
When there is no rotation there are four oscillatory modes and two modes of zero 
frequency, the latter modes leaving the free surface undisturbed. The nodal lines 
of each oscillatory mode consist of one or other of the principal axes of the basin 
together with either an ellipse or a hyperbola, the four possible combinations 
corresponding to the four modes. The modes of zero frequency each consist of 
two equal and opposite circulation cells, in one case separated by the minor axis 
and in the other case by the major axis of the basin. 

When the system is rotating the frequency equation is 

and the two modes formerly of zero frequency, appear as a pair whose frequencies 
are equal but of opposite sign, corresponding to a single oscillatory mode of 
arbitrary phase. This additional mode is of low frequency (v < f )  and therefore 
of the second class (see Lamb 1932, Q 223); it  still leaves the free surface almost 
undisturbed. Very good approximation to this and higher second-class modes 
can be obtained when the rotation is small by assuming that there is a rigid upper 
boundary to the liquid. Attention is thereby confined to the second-class modes, 
because the first-class modes depend for their existence on gravitational restoring 
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forces resulting from the deformation of the free surface, whereas the second-class 
modes merely require a gradient of potential vorticity within the liquid. The 
second-class modes will be discussed in more detail in a later paper where it will 
be shown that elliptic rotation is unstable in some circumstances. 

This work was completed while the author held a fellowship a t  the Australian 
National University. 
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